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ANTIPLANE SHEAR OF A DOMAIN WITH TWO CLOSELY LOCATED CRACKS* 

S.A. NAZAROV and P.K. CHERNYAEV 

Antiplane deformation of a domain with two parallel cracks of different 

lengths, where the smaller can be above the larger or displaced relative 

to it, is investigated. A method of solving such problems was proposed 
in /l/. The spacing between the cracks is considered to be a small 
parameter of the problem. An approximate solution (the deplanation 

asymptote) is constructed and, consequently, asymptotic formulas are 

sought for the stress intensity factors. Crack interaction was 
investigated numerically in /2, 3/. 

1. Formulation of the problem. Let 61 be a domain in the plane R" with a smooth (in 
the class Cm) boundary X,2, containing the segment K = (XC= R”: I, = 0, -1 6 z1 6 I}. We 

introduce stillanother segmentdependentonthe smallpositivepara- 

meter e Me= {x: x1 = tz, a< xl< 3) andthe domain 9, = Q ',(N U MC) 
(Fig.1). Here a and b are numbers in the interval (-1, 1); E< min 

{1 - b, 1 + a, a + b}. We will examine the antiplane shear problem 
in the domain Q, 

pbu (E, 5) = 0, 5 E 9,; p-g (E, 5) -= p (x), x E aa 11.1) 

au 

Fig.1 

where u is the deplanation, p is the shear modulus, n is the unit external normal vector to 

aQ, and cl and PM*, P,X~ are smooth external loads applied to the contour of 0I? and the 
edges M,*, Iv* of the slits Me, N, respectively. We assume that the forces on the 
boundary of 8% are selfequilibrated, i.e, the following condition is satisfied: 

c 
;n 

Q(Xjdl (l.Zj 

for the solvability of the boundary value problem (1.1) in the space J$'2'(Q,) (or in the class 
of bounded functions). 

Let I‘~,@, be polar coordinates with centre at the vertex (b, E) of the crack .I/, such 
that the edges ‘ST,+ are given by the relations 0, = *n. The representation 

IL(E, a)= collst ( Kb (e)!~-‘(‘/~ r&c)'/: sin'/, 8, ~C O(r, j In rb I) (1.3) 

holds for the solution u of problem (1.1) in a small neighbourhood of the point (JJ,E) where 
K, (t.) is the stress intensity factor /4/. Analogous formulas also hold near the ends (a, e) 
and (&l,O) of the slits fi!, and N. We denote the appropriate intensity factors by K,(F) and 

K+ (t.). _ 
A method of solving this problem and a broader class of problems in ideal fluid flow is 

developed in /l/. It utilized conformal mapping and enables the problem to be reduced to an 
evaluation of quadratures. The purpose of this paper is to construct an asymptotic expansion 
in the parameter E. Taking account of the smallness of E, the asymptotic solution of problem 
(1.1) is expressed in terms of the solution of a simpler problem in the domain n with one 
slit N (which can be solved, in turn, by using the method described in /l/J. Approximate 
formulas for the intensity coefficients that clarify their qualitative dependence on the 

small spacing between the cracks are obtained as a result. In the case of canonical domains, 

when the limit problem has a solution in analytic form, the relationships obtained acquire 
an especially explicit form. 
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2. Asymptotic form of the solution in a narrow strip between cracks, We 
consider (1.1) and the boundary conditions (1.3), (1.4) as a boundary value problem in a thin 
domain 11, = {x: O<z,< F, n <z,< b}. Following /5-7/, we will seek the asymptotic expression 
of the function u 

Substituting 
coefficients of F 

in the form of the sum 

U (F, z) - t.~%(." (.X1) -I- X1 (Liz,) + EU', (Zr, c-'I*) EE 11' (P. L) (2.1) 

(2.1) into the equation and the last two conditions in (1.1) and equating 
1 and fU, we obtain the relationships 

@Il.,, 
IL -- (519 rl) f f' 7 d2u;n (zr)=O, '1 E(O, 1) (2.2) 

(Zr, O)=.--p';(zr); '1= + 

If (2.2) is considered as a boundary value problem in the function 1Y, (with the parameter 

51 .z (n. b)), then the equation 

d*u-,, 
p ygm- (Zl) = -- p;, (Xl) - p> (zt), 

1% 
Xl F ia, 6) (2.3) 

which must be considered as an equation for the unknown function K,,, is the condition for its 

solvability. The necessary boundary conditions for (2.3) will be determined in Sect.5 when 

studying boundary layers near the points (n, e) and (b, F). 
The equation for the function 1/'1 in (2.1) has the same form as (2.3), and is found by 

using the same reasoning (see Sect.5 of /7/, say). However, the function w1 is not needed 

to construct the principal term of the asymptotic expression of u. We merely note that the 
equation mentioned has a zero right-hand side, i.e., 11.1 is a linear function. 

3. The asymptotic form of the solution far from IJ,. If we set e = 0. then the 

domain n, is transformed into the domain R,, with a single crack N. The boundary value 

problem (1.1) hance transforms into the following 

Problem (3.1) 

Consequently, 

Namely, we extract 

JI,, and we permit 

the boundary value 

it is necessary to expand the class of functions allowable as solutions. 

the points (a, +0) and (b, +0) that are images of the tips of the crack 

the functions u to have logarithmic singularities at these points. Then 

problem becomes solvable; however, its solution will be determined to the 

accuracy of a linear combination of two functions satisfying the homogeneous problem. The 

first is identically equal to one, while the second agrees with the Neumann function G whose 

poles are at the points (a, LO) and (b, t-0). We recall that the function G satisfies the 
relationships 

AG(s)= 0, a <E 00; -$r)= 0, z .=! a<?, (33) 

G (1.) = --n-l In rb + Gb + 0 (rb), rE > 0, rb -> 0 (3.4) 

G (z) L- nm' In r,, + G, + 0 (I^~~), .r? > 0, r, -a 0 (3.5) 

where G,, and G, are certain constants. 

Thus, we select the linear combination 

u(e. .r)- C" + V, (.z) + A, (E)G (z) -- V (E, 5) (3.6) 

as the asymptotic expression of the function u (as a solution of problem (3.1)), where c,. is 
an arbitrary constant (rigid displacement), the quantity A,, (E) is to be determined, and I', 

is a function bounded outside any neighbourhood of the point (b. 0) and satisfying (3.1) and 

subject to the relationship 

l'"(1)= n-'l~l-'lnr, -, 1-L'] _I- O(rgj Inr, I), I2 >o, rb- IO (3.7) 

$lro (I) = 0, s -_ !o; p + (.z-) = ‘1 (.r), .l -I= ix., 

i’ 2 (Cl, - 0) = - p;; (Xl), Xl .: (1, n) I; (b, I) 

1’ 2 (Xl, + 0) = - pl;r (Xl), x1 ‘; (0, ‘1); 

I’ -g (0, - 0) zr p; (Q), 21+z(- I, 1) 

cannot have a bounded solution since by virtue of (1.2) 

(3.1) 

P s 2 (1.) ds = - I, I = ’ (p+N (XI) + pi, (~1)) da s (3.2) 

or20 
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4. Boundary layers near the tips of the crack MC. A formal asymptotic expression 

of the functions u inside and outside n, was found in Sects.2 and 3. In order to combine 

these representations, and therefore, eliminate the arbitrariness in the selection of certain 

constants, we will study the behaviour of the solution of problem (1.1) in the neighbourhoods 

of the points (a, e) and (b, E). As usual, a boundary layer originates in these zones. By 

virtue of the symmetry of the problem, it is sufficient to consider just one tip of the crack 

M,, the point (6, E), to be specific. We make the change of coordinates I --,E = e-1 (x1 - b, 

x2) a stretching of the domain ap E- 1 times relative to the point mentioned. Transferring 

to E=O and confining ourselves to a consideration of the equations for ES > 0, we obtain 

the boundary value problem 

where S = R,' \ (5 E R2: 52 = 1, 5, < 0) is the upper half-plane with a cutout ray (Fig.2). 

The domain E has two "exists" at infinity: in the form of 

and the half-pole E_. We will list the solutions 

of problem (4.1) that have not more than polynomial growth in E 

,i~~~~;;;;;;:[.lb 111 I 6II”) in -+. One such solution ~_ " 1:' 
: c,,(i) = 1. From the results of /8, 9/ it follows 

z 5, 

;, possessing the properties mentioned will 

0 

Fig.2 

5, (E) = cl& + C$ + 0 (erp (XL)) as E,--x in 2_ 

C1 (E) = c3 In I5 I + c4 t 0 ( I E I -I I In I E II ) as IEI- 
h-05 in E, 

(4.2) 

where c, are certain constants. We substitute c1 and <,, into the Green's formula for the 

domain ?n = {E E Z: 1 E 1 <R for E E E,, and EL > -R for F, E E_}, where R is a large 
positive number. We have 

O= (by No B) - 50 G)&(E)) dS = (4.3) 
E/l 

5 (;I (5) 2 (E) - j” (E) s (E)) dl 
05,: 

where dl is an element of the length of the arc. The integrand in the last integral of (4.3) 
differs from zero only for the integral I+ along the arc {m - arcsin (R-l) > 0 > 0, 1 E 1 = H} 
and for the integral I_ along the segment (E, = -R, 0 < j, < I}. Using (4.2), we find that 

n--arcsin (H-1) 

I+=- s (c~+O(R~~InR))c10=-~nc~--~~~(R~~InR) (4.4) 
0 

I_= i(cl +O(esp(-nR)))d$ -cc1 +O(exp (-~$2)) 
0 

Therefore, passing to the limit as R--f co and taking account of (4.4), we derive the 
equation Cl = ncg from (4.3). 

It only remains to note the following. If it is assumed that the solution .z of problem 
(4.1) has the asymptotic expression (4.2) for c1 = cQ == 0, then it follows from Green's formula 
of the form (4.3) for 5, and z that cS = cq. Moreover, the solution that vanishes at infinity 
and corresponds to zero constants cj in (4.2) possesses a finite Dirichlet integral, and 
therefore, is trivial. 

Thus, all the linearly independent solutions sought for problem (4.1) that have the 
mentioned growth at infinity are exhausted by two: Go and j,. The function 5, is determined 
by using conformal mapping of the half-plane into the domain 5: 

7h + iqz - E1 + iE, = n-l (e-’ (VI + ill,) + In (Ill + iqq)) (4.5) 

Namely, if y: 5, + i& - . . 11~ + in8 is a reciprocal function to (4.51, then c1 is given by the 
equation /lo/ 

51 (E) = 111 I y (E, - iE?) I (4.6) 

Direct calculations result in the following values of the constants cj in the asymptotic 

forms (4.2) of the function (4.6) 

cr = n, C? = 0, C:( 1, Ca = 1 + 111 ;[ (4.5) 
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Later a representation of the type (1.3) is needed for the function <, near the tips of 
the slit 

& (5) = 1 + (%(I)"* sill 'i,cp + 0 (p) (4.8) 

where p,'p are polar coordinates with centre (0,1) such that the slit edges are given by the 
relations '; = +I; here (p = 8 + G(e). p = E-r(r + G(E)) (see (1.3)). 

Ue note finally that by allowinq a linear growth of the function z in the corner E, we 
obtain one more solution c%(E)== E1 of the homogeneous boundary value problem (4.1) in addition 
to 5, and &. 

5. Combining asymptotic forms using boundary layers. we will seek an approxi- 
mation of the solution u of problem (1.1) in small neighbourhoods of the points (a,~) and 

(by ej in the form 

As mentioned earlier, the role of the boundary layers (5.1) and (5.2) is to combine the 
approximations to u. Using the method of combinable asymptotic expansions f/11-13/, etc.), 
we find the quantities C, (e), cb (E), & (E), By and A, (8) in (5.1) , (5.2) and (3.6) from the 
condition that the asymptotic expansions (2.1) and (3.6) should be in agreement in common 
intermediate zones. 

If the point z is such that 0<x2 < E,X~ - b - f;, then 

or in E coordinates (see Sect.41 

u’ (C, @,I)) + F%)= EC'U.o(O) + Wi(0) + b 2 (b) i_ 

L$$+& (h) -_L 0 (l/P) 

(5.3) 

Using (4.2) and (4.71, we find that 

2, (E, s) -' cb (F) + B, (e) n& $ 0 (elp (z:,)) (5.4) 

Equating (5.3) and (5.4), we deduce the relations 

Q(P)-- e%.u(O) '- X.1 (0), B,(e)= B,= .C'$;(b) (5.5) 

If Z,>F and rb - 1/F, then according to (3.4)-(3.7) we have 

l'(~,~)=c,+~-lIC1-lInr,-: b -b" + A0(~)(-~32-11nr,+G,) ,-o(b'e) (5.6) 

Moreover, in the same zone the formula 

x,(~,.~)=tb(~)3_Bh(tn(~~&-1)$ 1nJc-i i)+O(f/i) (5.7) 

follows from (4.2) and (4.7). 
The relations 

p-V - ilo (e)= nB*, C, J vbO + /IO(E) G, = cb (t)+ &,(h(&-'n) + 1) (54 
result from the assumption about the coincidence of the asymptotic expressions (5.6) and (5.7). 

In considering the boundary layer Z, the relationships 

C, (F) = e-'IQ, (a) i_ ~1‘~ (a), B, (E) zz B, -2 - .-I 2 (u) (5.9) 

-40 (E) =x0,, c, -p VcIo + A. (e) G, = cn (e) + B, (In (e-k) + 1) 

are deduced in exactly the same way. 
Solving the system of algebraic Eqs.(5.5), (5.S), (5.91, we find the missing boundary 

conditions for the function IL" satisfying (2.3) 

U'o (b) - U'o(U) = 0, 2 (bj - $$(ej =_ Ip-1 (5.10) 

the expressions for the unknown constant 

-do(F)3 Ao== - -;;-z ’ dwo (a), 3, = -f$$ (a). &=&Z (6) (5.ll) 



633 

and also one of the boundary conditions for the function w, 

WI(b)-ww,(a)=V,“- v,“-$~(=)(G,--G,)+ 

The second boundary condition and, as remarked earlier, the equation for w1 are determined 

when constructing the next terms of the asymptotic forms. 
We note that problem (2.3), (5.10) is solvable (according to the definition (3.2) of the 

quantity I and the assumption (1.2) about the selfequilibration of the load). 

6. Foundation for the asymptotic expansion. We assume the solutions IL, V and G 

of problems (l.l), (3.1), (3.7) and (3.3)-(3.5) are normalized by the conditions 

s u (e, z) d.z = 5 V(e,z)dr= 5 G(.z)dr=O (6.1) 
an ,352 an 

Let x be the cutoff function from C,"(Rl) such that x(t) ~2 II for Itl>l and r.0) = 1 
for 1 tI <I/, while x(e. 2) = (1 - x (r&"*)) (1 - x (rbe-"2)). We introduce the function 

U(e,z)=V(e,z), .zE$,, .Q<o (6.2) 

U (E, 2) =X (F, 2) V (F, 3) + x (r/'l)z.(F, I) + 

x('bE-'!') z, (E, 5) ( 2 E R, \ ii,, z* > 0 

u (E, 2) = (1 -2 ((XI - 0) E-‘!‘) (1 - X ((5x- b) E-‘:+V (F, J) + 

x ((=I- a) E-“7 Za (p, 5) + x ((a - b) E-I’,) Z,, (t., .z). I E & 

(see (2.1), (3.6), (5.1), (5.2)). It is clear that U satisfies the boundary 

(1.1) on N, M,- and 89 but leaves a residual O(e,zl) on M,+ which allows 

10 (e. 4 I < c,e Ih - a + 4 (b -- 21 + @I"' 

Since the functions lJU,Z, and Zb are harmonic, residual T(E,s) of the 

conditions from 

of the estimate 

(6.3) 

approximation U 

in (1.1) is concentrated in the union of R, and the fi-neighbourhoods of the points 

(b, +O) and (a,+O). By virtue of the agreement of the asymptotic forms V and Z,U! and Z near 

these points, the following relations hold: 

The estimate 

results (according to (6.1)) from the one-dimensional Hardy inequality and the Poincard- 
Friedrichs inequalities. 

By virtue of (6.3) and (6.4), the integral over 51, from the right side of (6.5) does 

not exceed cge 1 11x 12 and the integral over M,+ does not exceed CTE. Hence 

11 u - UT; W,l (Q,) II -5 CR 1/i 1 111 e 1 (6.6) 

To simplify the discussion we will confine oursevles here to the deduction of just a 

rough estimation of the closeness of the constructed approximation (6.2) to the solution of 

the problem (1.1). The inequality (6.6) can be refined by using the method in /14/. In 
particular, the relationships 

u (e, 2) = V (e. 2) - 0 (E 1 In t: 1 ) in 61, 1 nE \ 11~ (6.7) 

u(f,5)=Z(e,3)~~O(fIlnFI! in D,; D* = (z Gz !1, : rnLU (T<>’ rb) < 6) 
hold, where 6 is a fixed positive number. We note that the operator min (8, r,, Q,} ala+, can be 

applied to the left-hand sides of (6.7) without degrading the estimate of the residue. 

7. Asymptotic expression for the intensity factors. Asymptotic formulas for 
the stress intensity factors at the tips of the cracks M, and N are a result of the representa- 

tions (6.7) of problem (1.1) (see (1.3)). We introduce the coefficients k,* and lo* into 

the expansions 
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G(z)= con& + or- sin'/& 1- 0 (r*) as r+ -> 0 

of the harmonic functions v0 and G (see (3.7) and (3.3)-(3.5)). Here r,, 6* are polar 

coordinates with centres (&l,O) such that the edges IV* of the slit N are given by the 

equations 8+ =x and 0* = --n. 

Comparing formulas (1.3), (3.6), (7.1), (7.2) and (5.11), we find that 

K*(E) = k$ - n-l $f(a)k$+O(+vzj) 

Similarly we deduce the following relationships from (5.1), (5.2) and (4.8) 

K,(E) = +E-'!g 2 (a) + 0 (l/i] he I) 

Rb(~)= - 2pe-"9~ (b) -t 0(1/E 1 Ins I) 

(i.1) 

(7.2) 

(7.3) 

(i.4) 

The solution w0 of the oridinary differential Eqs(2.31, (5.10) is contained in the 

asymptotic formulas (7.3), (7.4). If 1~'~ = const, then the representations (7.4) become of 

little interest. The latter holds, say, if the crack edges are stress-free, i.e., p,&=p& = 

0 in (1.1). We consider the situation mentioned by constructing the second term of the 

asymptotic form (its proof is carried out exactly as in Sect.6 and is omitted here). 

Far from flE we seek the asymptotic form u in the form 

u (8, x) - ~0 (x) + ='I (r) -I- sA,G (z) (7.5) 

where A, is a certain constant and the function u0 satisfies relationship (3.1) and the 

boundary condition 

1‘1 is the solution of the boundary value problem 

Acl(z)=O, xc R”; gqz)=O, r-_ao 

-$ (Xl, + 0) = s (Zl, + O), Zl z (CL. b) 

s (x) -= 0, z E N- IJ (N’ \ MO+) 

Let us clarify the reasons for this choice of the right-hand sides of the boundary 

conditions (7.8). Expanding the function on the right in (7.5) in a Maclauren series, we 

find that for z E M,+ (or z1 E (II, b), 3% em E -1. U) 

(7.7) 

(7.5) 

Since L.‘~ and G satisfy the homogeneous Neumann conditions on A'+, the coefficient of F 

from (7.9) vanishes if 

According to Sect.3, a solution of the problem (7.7), (7.8) exists that is bounded 

outside any neighbourhoodofthe point (b, + 0) and allows of the representation (compare 

with (3.8)) 

r1 (2) = n-lI1 IIIT~ -,- l.*l + O(r, j In i-01) as rb -> 0, z2 > 0 (7.10) 

(7.11) 
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Inside &. the solution u (E,I) is approximated by the quantity ic1 (x1) which is a 
linear function a.r, -+ /3 (see Sect.2). The boundary layers (5.1) and (5.21 have the form 

Performing the combination , we obtain algebraic equations as in Sect.5 

(7.12) 

(7.13) 

(7.14) 

Solving the overdefined but solvable system (7.141, by virtue of (7.111, we find that 

A, = =%a = 1, - x&,, a = (z. (b, i_ 0) - r. (a, + 0)) (b - a)-” 

B,=$L-$yb, .i_O)), B”.=~($(fI,+o)-a) 

(7.15) 

Therefore, the following asymptotic formulas for the intensity factors result from (7.5), 
(7.121, (7.13) and (7.15) in the solution of problem (1.1) for pat* = p,$ = 0 

g+(,)=k~iCe{k:,-i-h-c~(~(*,-i_O)- (';.lli) 

m(b,+"i;~~ia,+~~ j]+O(eajtnBI) 

where kEv are coefficients inrepresentationsof the type (7.1) and (7.2) for the solution 

Cl of problem (7.7), (7.01. (Ue note that the asymptotic form K,,(e) has the form (7.17) 
where the opposite sign should be taken and a and b interchanged ) _ 

When 52 = R” formulas (7.16) and (7.17) take a more specific form. In particular, for 
functions u harmonic in Q, =R' \ (.Y u M,) and subject to the relations 

p $+t.) --x- 0, SE iv L' MC; (7.15) 

the intensity factors are calculated from the formulas 

(7.19) 

8. Cracks shifted relative to one another. We will investigate a crack arrangement 
different from that studied in Sects.l-7. We retain the same notation aa in Sect.1 for a, b, E 
and W. we set MG = {x E R': 5% = a, --1 a z1 < b), JVil', ;-i (Lz E R': S? -; 0, u i Xl < I}, Q,=Q\ 
N, \ nfE (Fig.3). We consider (1.1) with zero Neumann data on N, U Ms. The asymptotic form 
of the solution is constructed by the same scheme as before. The sole difference is in the 

definition of the function ul. 
In the case under consideration the residual a"C,!3Xl2 occurs in the set iMe* lj {x C :lIc-: 

-I< 51 <a}, and consequently, the right-hand sides of the boundary conditions of the type 
(7.8) have the inadmissible growth Ofi") as r--,0. The reason for such growth is that the 
image (-1.0) of the left tip of the crack ~11, in the limit problem is shifted relative to the 
initial position and the function r,, does not satisfy the boundary conditions near (--1,O). 
Consequently, it is necessary to change the form of the fundamental approximation to u by 
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selecting 

as its function, where x is the cutoff from Sect.6 , and 6 is so small a number that the 
support X6 intersects neither dB nor .Vr. We note that outside the neighbourhood of 
the point (---I,&) the function (8.1) is expanded in a series of non-negative integer powers 
of e; this expansion is obtained after application of Taylor's formula to the first term on 
the right in (8.1). 

Fig.3 Fig.4 

The principal term of the residual V* in the boundary condition (1.1) has the form 
~'I_~FI*, where 

Moreover, a residual appears in (1.1) whose principal term agrees with the quantity 
E&(P), where 

411 (x) = - $f$ (x) hXp (.I?) - 2v 2 (,r) .0x5 @) 

Since vg is a harmonic function, then 

and consequently, a solution t', of the boundary value problem exists 

which allows of the representation (7.10), (7.11), where (a, i-0) should be replaced by (G-O). 
Theremaining reasoning for the construction of the asymptotic expression is exactly the 

same as in Sect.7. We consequently obtain the asymptotic formulas (7.16), (7.17) for the 
intensity factors, in which 6% 4-O) must be replaced by (a, -0) and h-?,, should be under- 
stood to be the factors in the asymptotic forms of the solution of problem (8.21, while ksf 
are the factors in the expansion (7.2) of the Neumann functions with poles (a, -0) and 
(b.40) (compare with (3.4) and (3.5)). In the case of problem (l.l), (7.18) in a plane, 
formulas (7.19) become 
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Finally, we formulate one more result. We consider the crack arrangement shown in Fig.3 

in the case when the cracks have the same unit length while the dimensions of the rectangle 

n, between the cracks are 1 x E; 1 E(U, 1). The relationship 

K (F, I) = 2~ l& (I) f 0 (~“2 j In t‘ ] ) 

holds for the intensity factor K (E,l) at the right tip of the crack &I, for problem (l-l), 

(7.18). 
As 1-j 0 and 1 + 1 the auantity x(Z) tends to M; for values of I and 1 - 1 close 

to E. the formula for K (E, I) -loses 

the smallness of E (see Sect.1). A 

intensity factor are achieved at the 

accuracy because of the breakdown of the assumption about 

minimum of the function x (Fig.4) and the stress 

point I, = 2 (vc?- I). 
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